Пропустить навигацию.
Главная

Комунальная ГИГИЕНА Е.И. ГОНЧАРУК ч 4

На степень загрязнения атмосферного воздуха влияют облачность, туманы, радиационный режим и осадки. Так, облачность, особенно низкая, препятствует турбулентному обмену в атмосфере и способствует появлению продолжительной инверсии, при которой количество примесей в воздухе увеличивается от 10 до 60% . При поглощении примесей влагой могут образоваться более токсичные вещества. Например, происходит окисление серы диоксида до серной кислоты. При этом возрастает массовая концентрация примеси, так как вместо 1 г серы диоксида образуется 1,5 г серной кислоты. Во время тумана концентрация загрязнений увеличивается на 40—110% по сравнению с наблюдающейся до тумана. Под влиянием солнечной радиации происходят фотохимические реакции и образуются вторичные продукты загрязнения атмосферы, которые могут быть токсичнее веществ, поступающих из источников выброса. Фотохимические реакции, протекающие в атмосфере, были бы невозможными, если бы от источника не поступала необходимая энергия. Например, молекулярный кислород диссоциирует при энергии 500 кДж/моль. Такая энергия не может быть получена от газов при низкой температуре в атмосфере. Ее обеспечивает солнечная радиация. Инфракрасная область спектра охватывает от 1 до 100 мкм ( 1 мкм = 10"6 м = 104 А). Фотоны, излучаемые Солнцем (X = 1 мкм), имеют энергию 125 кДж/моль. Очевидно, что при X. = 100 мкм, энергия кванта света составляет 1,25 кДж/моль. Фотоны этого диапазона энергии могут нагреть газ или привести его молекулы в возбужденное вращательное или колебательное состояние. Однако они не обусловливают перемещение электронов. Для разрыва связи С—С или С—Н необходима энергия почти в 350 и 420 кДж/моль соответственно. В УФ-диапазоне спектра от 0,4 до 0,2 мкм энергия фотонов составляет от 290 до 580 кДж/моль. Поэтому большинство фотохимических реакций происходит в близком ультрафиолетовом излучении или в нижней области видимого спектра. Фотохимическую диссоциацию молекул можно рассматривать как двухступенчатый процесс: 1) поглощение молекулой кванта энергии, что приводит их в состояние возбуждения; 2) диссоциация молекулы с образованием продуктов реакции. Так, в верхней атмосфере (более 80 км) фотоны А. = 0,2 мкм атакуют молекулярный кислород, вследствие чего образуется атомарный кислород. И в этой области кислород существует в виде одноатомных молекул кислорода:

02 + Ии = 20*,

где Ии — энергия фотона: и — частота, И — постоянная Планка (6,62 • 10"34 Дж • с).

В нижней атмосфере высотах атомарный кислород принимает участие в реакции рекомбинации с образованием молекулярного кислорода — реакции присоединения 02 с образованием озона:

О* + 02 = 0з.

Под действием фотонов А, = 0,2—0,29 мкм происходит фотохимическая диссоциация озона:

03 + Ии = 02 + О*.

Вследствие этой реакции над поверхностью земли образуется слой озона с наибольшей концентрацией на высоте между 16 и 32 км. В нижней атмосфере (тропосфере) озон образуется при фотохимическом цикле азота диоксида. При излучении А. 0,38 мкм азота диоксид диссоциирует по реакции:

N0, + Ии -> N0 + О*.

Это одна из наиболее важных фотохимических реакций в нижней атмосфере, поскольку в ней образуется высокоактивный атомарный кислород. Атомарный кислород соединяется с молекулярным кислородом, образуя озон. Озон взаимодействует с азота оксидом, образуя азота диоксид и молекулярный кислород:

03 + N0 = N 02 + 02.

Возможны и другие реакции при участии веществ, содержащих азот и кислород. Азота диоксид может снова вступать в реакции, пока не преобразуется в кислоту или не прореагирует с органическими соединениями с образованием нитросоединений. Например, в присутствии капель водяного пара:

4 N0., + 2Н20 + 02 = 4НШ3

или во время гидролиза в газовой фазе:

3Ш2 + Н20 = 2НШ3 + N0.

Установлено, что концентрация озона в атмосфере возрастает пропорционально количеству азота оксида, окисленному до азота диоксида. Озон и атомарный кислород, который образуется вследствие диссоциации азота диоксида, реагирует с разными способными к реакции органическими веществами (особенно с олефинами с разветвленными и прямыми цепочками и внутренними двойными связями, три-, тетраалкилбензолами и олефинами с конечными двойными связями, диалкилбензолами, альдегидами, этиленом, толуолом, углеводородами парафинового ряда, ацетиленом, бензолом и др.) с образованием органических и неорганических свободных радикалов:

03 + RCH = CHR = RCHO + RO' + НСО\

где RO*, НСО* — свободные радикалы. Альдегид RCHO, который образуется в этой реакции, загрязняет атмосферный воздух. Затем происходит реакция взаимодействия свободного радикала с молекулярным кислородом с образованием перекисных радикалов (ROO*):

R* + 02 = ROO\

Эти перекисные радикалы способны окислять N0 в N02:

ROO* + NO = N02 + RO*.

Таким образом, за счет реакций углеводородов этого типа увеличивается количество азота диоксида и озона. Дополнительным источником образования озона может быть также реакция перекисных радикалов с молекулярным кислородом:

R00' + 02 = R0' + 03.

Часто один и тот же радикал, который является продуктом одной реакции, выступает как реагент в другой реакции. Поэтому относительно небольшое количество различных свободных радикалов может быть ответственным за образование таких веществ, как альдегиды, кетоны, углерода оксид, диоксид, соединения по типу пероксиацетилнитратов, перекисных, гидроперекисных соединений, пероксида водорода:

RC0'2 + N0* = RCO ' + N02;

RCO'2 + 02 = R0 ' 2 + С02;

RO ' +NO- = RONO;

RO* + RH = ROH + R*;

RC0 ' 3 + N02 = RC03N02.

В атмосфере населенных пунктов могут происходить и другие реакции образования свободных радикалов. При этом атомарный кислород реагирует с водой, образуя гидроксильные радикалы (НО*). Гидроксильный радикал инициирует цепочку реакций с озоном и углерода оксидом:

НО' + 03 = Н0'2 + 02;

НО* + СО = С02 + Н\